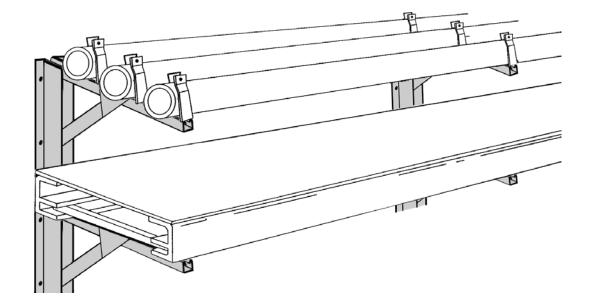


Do More.



CONTENTS

Features and Advantages	4
Engineering	5
Definition of Load Data	6-7
Connector Plates	8-9
Accessories	10-11
CHAMPION THREAD™ & Fasteners	12
Instrument Pipe Support	13
Corrosion Resistance Guide	14

CHAMPION STRUT[®] - the obvious solution for corrosive environments.

- Corrosion resistant. (See the corrosion resistance guide on page 14) For assistance, contact our engineers for proper selection.
- Complete system of fiberglass components.
- · Includes strut (channel) and a wide variety of fittings, threaded rods, nuts and accessories.
- · Available in both POLYESTER and VINYL ESTER resins.
- Supplied in standard 10 ft. lengths.
- · Offers the following advantages:
 - · Competitively priced in comparison to stainless steel
 - · Resistant to sunlight (UV resistant)
 - · Easy to field drill and cut
 - Lightweight
 - · Fire retardant

All of the strut and most of the fittings are manufactured by the PULTRUSION process where continuous strands and mats of glass fiber are immersed in the resin and then pulled through a heated die. Many different shapes can be manufactured by this process. Special UV additives along with a polyester surfacing veil are added to give the components increased UV and corrosion resistance.

TEMPERATURE & PHYSICAL PROPERTIES

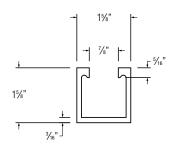
(See Pages 6-7 for Load Data and Deflection for each individual section)

EFFECTS OF TEMPERATURE

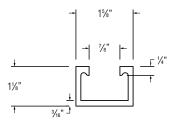
Tempe	rature	Approximate Percent of Strength		
°F	(°C)	Polyester	Vinyl Ester	
75°	(24)	100%	100%	
100°	(37)	90%	100%	
125°	(51)	78%	100%	
150°	(65)	68%	90%	
175°	(78)	60%	85%	
200°	(92)	52%	70%	

Strength properties are reduced when continuously exposed to elevated temperatures. Working loads shall be reduced based on the above. If unusual temperature conditions exist, consult the factory.

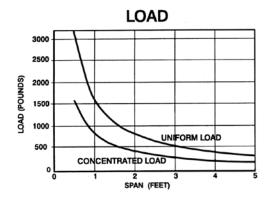
TYPICAL PHYSICAL PROPERTIES

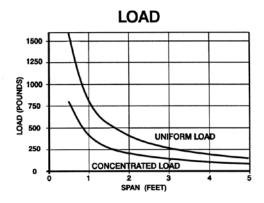

Tensile Strength	40,000 psi	(275 MPa)
Flexural Strength	45,000 psi	(310 MPa)
Flexural Modulus	2.5 x 10 ⁶ psi	(17.2 GPa)
Compressive Strength	25,000 psi	(172 MPa)
Specific Gravity	1.7	(1.7)
Coefficient of Thermal		
Expansion (Longitudinal)	5 x 10 ⁻⁶ in/in/°F	(2.8 m/m/°C)
Moisture Absorption	<1%, 24 hrs. at 70°F	(<1%, 24 hrs. at 21°C)
UL94 Flammability Classification	V-0	(V-O)
ASTM E84 - Flame Spread Index	<25	(<25)
- Flammability Rating	Class I	(Class I)
Surface Resistivity	$<$ 1.0 x 10 4 Ω	(<1.0 x 10 ⁴ Ω)
Volume Resistivity	$<$ 1.0 x 10 6 Ω cm	(<1.0 x 10 ⁶ Ωcm)

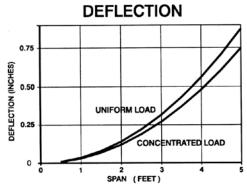
DEFINITION OF LOAD DATA

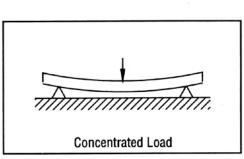

All load data are given for the two most common cases:

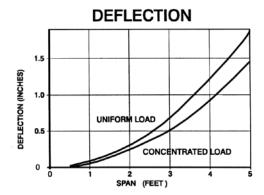
- · Concentrated load (often called point load)
- · Uniform load, i.e. where the load is spread evenly accross the span length

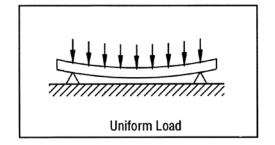

CS-S-15-10-P/V*

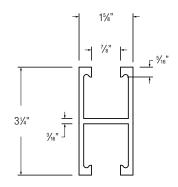

* Use P for polyester resin and V for vinyl ester resin.

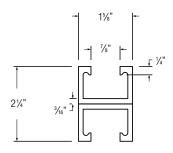


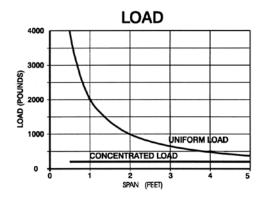

CS-S-11-10-P/V*

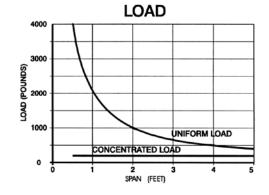

* Use P for polyester resin and V for vinyl ester resin.

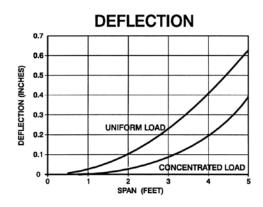


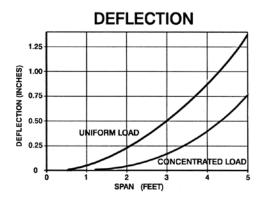


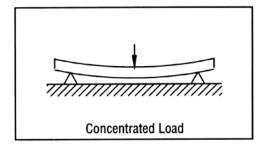


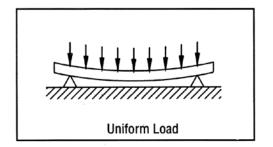

CS-S-15D-10-P/V*

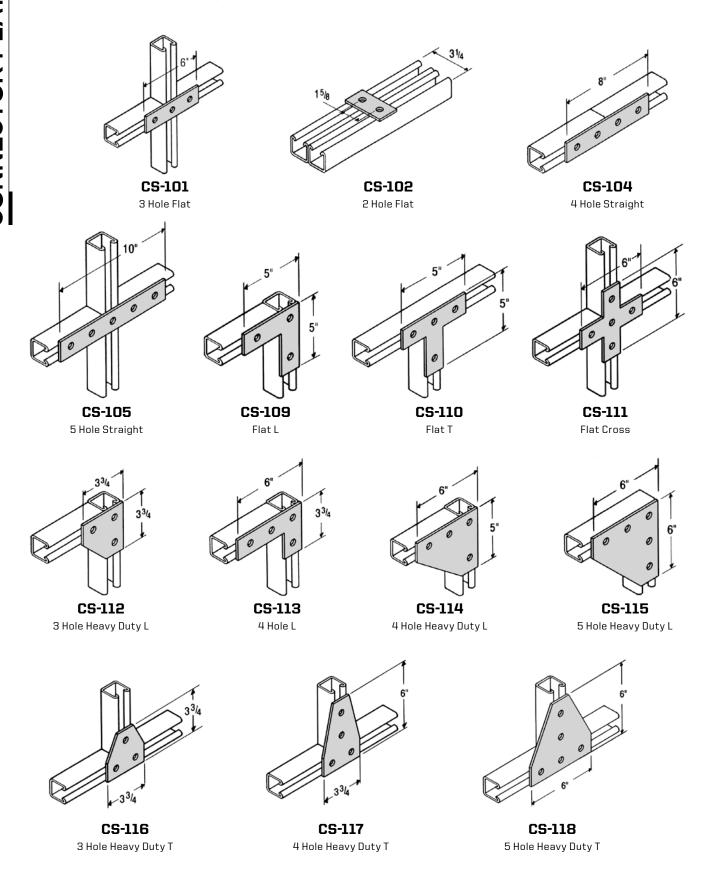

* Use P for polyester resin and V for vinyl ester resin.

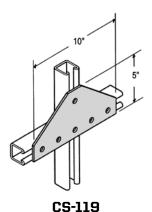



CS-S-11D-10-P/V*

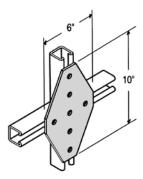

* Use P for polyester resin and V for vinyl ester resin.



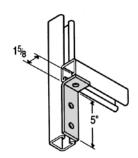


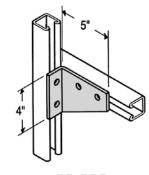

CONNECTOR PLATES

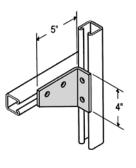
• Holes are drilled to accept 3%" and 1%" bolts

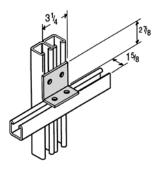


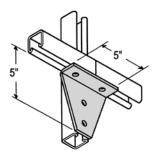
CONNECTOR PLATES & ACCESSORIES

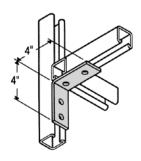

• Holes are drilled to accept 3/8" and 1/2" bolts


6 Hole Heavy Duty T


CS-120 7 Hole Heavy Duty X

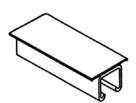

CS-205 3 Hole 90°


CS-209 4 Hole Heavy Duty 90° Right


CS-210 4 Hole Heavy Duty 90° Left

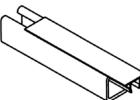
CS-211 4 Hole 90° Stubby

CS-226 4 Hole Heavy 90° T

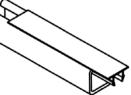


CS-405 4 Hole 90°

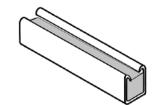
CS-S-15P-10-P/V*

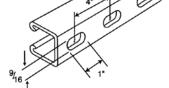

Strut with Pre-Drilled Holes

* Use P for polyester resin and V for vinyl ester resin.

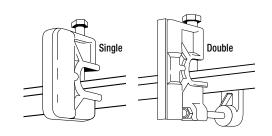

CSCI

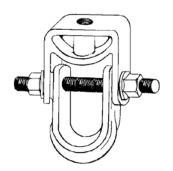
Concrete Insert

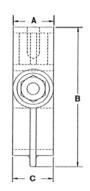

CSCS


Plastic Closure Strip

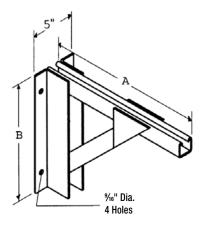
CSFI


Plastic Foam Insert for temporary use during concrete pour





When using this strut, divide max load (pg. 4 & 5) by 3 to obtain allowable loads.



BEAM CLAMPS

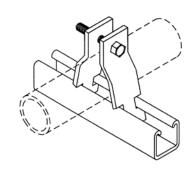
Allowable load = 300 lbs. Recommended safety factor of 3. Set screws included with clamps.

Vinyl Ester Beam Clamps	Part No.
Single for ¾" FRP Threaded Rod	CS-BC-3/8
Single for ½" FRP Threaded Rod	CS-BC-1/2
Double for %" FRP Threaded Rod	CS-DC-3/8
Double for ½" FRP Threaded Rod	CS-DC-1/2

SUPPORT RACKS

Part	Tray	Dimension	is in. <i>(mm)</i>
No.	Width	Α	В
CS-SR-06-P/V*	6 <i>(152)</i>	10 <i>(254)</i>	10 <i>(254)</i>
CS-SR-09-P/V*	9 <i>(229)</i>	13 <i>(330)</i>	12 <i>(305)</i>
CS-SR-12-P/V*	12 <i>(305)</i>	16 <i>(406)</i>	13 <i>(330)</i>
CS-SR-18-P/V*	18 <i>(457)</i>	22 <i>(559)</i>	16 <i>(406)</i>
CS-SR-24-P/V*	24 <i>(610)</i>	28 (711)	19 <i>(483)</i>
CS-SR-30-P/V*	30 <i>(762)</i>	34 <i>(864)</i>	22 <i>(559)</i>
CS-SR-36-P/V*	36 <i>(914)</i>	40 <i>(1016)</i>	25 <i>(635)</i>

Allowable load = 750 lbs.-based on total load, uniformly distributed over the width of the rack. Safety factor = 2


FIBERGLASS CLEVIS HANGERS

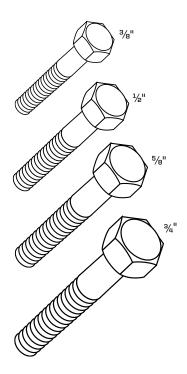
Design loads have a 3:1 safety factor at 120°F. Insulation may be required at higher temperatures.

Part No.	Nominal Diameter in.	Max. Pipe OD in. <i>(mm)</i>	Hanger Rod in. <i>(mm)</i>	Maximum Load Ibs. (kg)	A in. <i>(mm)</i>	B in. <i>(mm)</i>	C in. <i>(mm)</i>
CS-CH-3/4	3/4	1 (25)	1/2 (13)	200 <i>(90)</i>	2.53 <i>(64)</i>	4.52 <i>(115)</i>	1.25 <i>(32)</i>
CS-CH-1	1	1½ <i>(38)</i>	½ (13)	200 <i>(90)</i>	2.53 <i>(64)</i>	4.52 <i>(115)</i>	1.25 <i>(32)</i>
CS-CH-1.25	11/4	1¾ (44)	½ (13)	200 <i>(90)</i>	3.06 <i>(78)</i>	5.14 <i>(131)</i>	1.25 <i>(32)</i>
CS-CH-1.5	1½	2 (51)	½ (13)	200 <i>(90)</i>	3.06 <i>(78)</i>	5.14 <i>(131)</i>	1.25 <i>(32)</i>
CS-CH-2	2	2% <i>(67)</i>	1/2 (13)	300 <i>(135)</i>	3.68 <i>(93)</i>	6.52 <i>(166)</i>	1.25 <i>(32)</i>
CS-CH-2.5	21/2	3¼ <i>(83)</i>	½ (13)	400 <i>(180)</i>	3.68 <i>(93)</i>	6.52 <i>(166)</i>	1.25 <i>(32)</i>
CS-CH-3	3	3% <i>(98)</i>	1/2 (13)	600 <i>(270)</i>	7.04 <i>(179)</i>	10.00 <i>(254)</i>	1.50 <i>(38)</i>
CS-CH-4	4	51/4 (130)	½ (13)	600 <i>(270)</i>	7.04 <i>(179)</i>	10.00 <i>(254)</i>	1.50 <i>(38)</i>
CS-CH-6	6	7½ (181)	½ (13)	600 <i>(270)</i>	9.36 <i>(238)</i>	12.33 <i>(313)</i>	2.04 <i>(52)</i>

"NON-METALLIC" **UNIVERSAL PIPE CLAMPS**

For rigid steel, PVC coated steel, PVC schedule 40 & 80 and filament wound epoxy fiberglass conduit (IPS only). Made from a special grade of glass reinforced vinyl ester resin. Standard fasteners are non-metallic bolts and hex nuts. See page 11-12 in this catalog.

If stainless steel fasteners are preferred, add letter "S" to part nos. below.


		Conduit Outside Dimensions in. (mm)			
		PVC	PVC		Epoxy
Part	Pipe	Schedule	Coated	Rigid	Fiberglass
No.	Size	40 & 80	Steel	Steel	IPS Type*
CS-PC-3/4-V	3/4	1.050 <i>(27)</i>	1.130 <i>(29)</i>	1.050 <i>(27)</i>	1.050 <i>(27)</i>
CS-PC-1-V	1	1.315 <i>(33)</i>	1.395 <i>(35)</i>	1.315 <i>(33)</i>	1.315 <i>(33)</i>
CS-PC-1.25-V	11/4	1.660 <i>(42)</i>	1.740 <i>(44)</i>	1.660 <i>(42)</i>	1.660 <i>(42)</i>
CS-PC-1.5-V	11/2	1.900 <i>(48)</i>	1.980 <i>(50)</i>	1.900 <i>(48)</i>	1.900 <i>(48)</i>
CS-PC-2-V	2	2.375 <i>(60)</i>	2.455 <i>(62)</i>	2.375 <i>(60)</i>	2.375 <i>(60)</i>
CS-PC-2.5-V	21/2	2.875 <i>(73)</i>	2.950 <i>(75)</i>	2.875 <i>(73)</i>	2.875 <i>(73)</i>
CS-PC-3-V	3	3.500 <i>(89)</i>	3.580 <i>(91)</i>	3.500 <i>(89)</i>	3.500 <i>(89)</i>
CS-PC-3.5-V	3½	4.000 <i>(102)</i>	4.090 <i>(104)</i>	4.000 <i>(102)</i>	4.000 <i>(102)</i>
CS-PC-4-V	4	4.500 <i>(114)</i>	4.580 <i>(116)</i>	4.500 <i>(114)</i>	4.460 <i>(113)</i>

^{*} Epoxy Fiberglass conduit, tubular dimensions (ID Type), does not fit into standard pipe clamps. Please consult factory.

^{*} Use P for polyester resin and V for vinyl ester resin.

Part No.	Description
CS-B- 3/8-1	% x 1"
CS-B- 3/8-1 1/4	% x 1¼"
CS-B- 3/8-1 1/2	% x 1½"
CS-B- 3/8-2	% x 2"
CS-B- 3/8-2 1/2	% x 2½"
CS-B- 3/8-3	% x 3"
CS-B- 1/2-1	½ x 1"
CS-B- 1/2-1 1/4	½ x 1¼"
CS-B- 1/2-1 1/2	½ x 1½"
CS-B- 1/2-2	½ x 2"
CS-B- 1/2-2 1/2	½ x 2½"
CS-B- 1/2-3	½ x 3"
CS-B- 1/2-3 1/2	½ x 3½"
CS-B- 1/2-4	½ x 4"
CS-B- 1/2-5	½ x 5"
CS-B- 1/2-6	½ x 6"
CS-B- 5/8-1 1/4	% x 1¼"
CS-B- 5/8-1 1/2	% x 1½"
CS-B- 5/8-2	% x 2"
CS-B- 5/8-2 1/2	% x 2½"
CS-B- 5/8-3	% x 3"
CS-B- 5/8-3 1/2	% x 3½"
CS-B- 5/8-4	% x 4"
CS-B- 5/8-5	% x 5"
CS-B- 5/8-6	% x 6"
CS-B- 3/4-1 1/2	¾ x 1½"
CS-B- 3/4-2	¾ x 2"
CS-B- 3/4-2 1/2	3/4 x 21/2"
CS-B- 3/4-3	¾ x 3"
CS-B- 3/4-3 1/2	3/4 x 31/2"
CS-B- 3/4-4	¾ x 4"
CS-B- 3/4-5	¾ x 5"
CS-B- 3/4-6	¾ x 6"

CHAMPION BOLT

Sizes: 3/8", 1/2", 5/8", 3/4" Material: Long glass fiber reinforced polyurethane.

CS-SEAL-C

CHAMPION SEAL FIELD CUTTING SEALANT

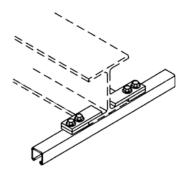
- · Seals exposed fibers after field cuts
- · Champion Seal exceeds vinyl ester material in corrosion resistance
- · Restores gloss and luster to weathered fiberglass
- · Seals exposed FRP threads after installation of threaded rod and hex nuts

Available in 12 oz spray

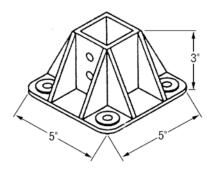
STRUT TO BEAM CLAMP ASSEMBLY

CHAMPION STRUT® Beam Clamps allow easy attachment of Champion strut assemblies to a wide range of structural members. They are made from glass reinforced vinyl ester. To estimate the length of strut required, take the width of the I-beam and add 5". Maximum recommended loading: 200 lbs.

EACH ASSEMBLY INCLUDES:



FOUR CHANNEL NUTS


FOUR FIBERGLASS BOLTS

DOUBLE BOLT ASSEMBLY

Part No. Assembly Description		Std. Qty.
CS-IC-3/8	Double bolt for ¾"	1 assembly
CS-IC-1/2	Double bolt for ½"	1 assembly

STRUT POST BASE

Part No.	Size
CS-PB-S	Post Base for S-15 Strut
CS-PB-D	Post Base for S-15D Strut

CHAMPION THREAD™ Fasteners and Hanging Systems are specially developed to give optimum strength and chemical corrosion resistance. The systems are excellent for all structural, mechanical and electrical applications where components must be corrosion resistant. All nuts are hex type and standard tools can be used for easy assembly.

FRP HEX NUT

Part No.	Size
CS-HN- 3/8	%" - 16 UNC
CS-HN- 1/2	½" - 13 UNC
CS-HN- 5/8	%" - 11 UNC
CS-HN- 3/4	¾" - 10 UNC
CS-HN-1	1" - 8 UNC

FRP THREADED ROD

Part No.	Size
CS-TR- 3/8	3/8" - 16 UNC
CS-TR- 1/2	½" - 13 UNC
CS-TR- 5/8	%" - 11 UNC
CS-TR- 3/4	¾" - 10 UNC
CS-TR-1	1" - 8 UNC

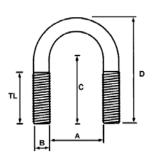
FRP CHANNEL NUT

Part No.	Size
CS-CN - 3/8 -V	%" - 16 UNC
CS-CN - 1/2 -V	½" - 13 UNC

FRP FLAT WASHER

Part No.	Size
CS-FW- 3/8	%" - 16 UNC
CS-FW- 1/2	½" - 13 UNC
CS-FW- 5/8	%" - 11 UNC
CS-FW- 3/4	¾" - 10 UNC
CS-FW-1	1" - 8 UNC

FRP ROD COUPLER

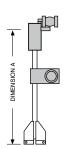

Part No.	Size
CS-RC- 3/8	3/8" - 16 UNC
CS-RC- 1/2	½" - 13 UNC
CS-RC- 5/8	%" - 11 UNC
CS-RC- 3/4	¾" - 10 UNC
CS-RC-1	1" - 8 UNC

TYPICAL PROPERTIES OF CHAMPION THREADED ROD

	Thread Size				
Properties	5/8-16 UNC	1/2-13 UNC	5/8-11 UNC	3/4-10 UNC	1-8 UNC
Thread shear strength using fiberglass nut in tensile (lbs.)	470	570	1,600	1,700	3,000
Transverse shear on threaded rod - double shear ASTM-B-565 (load lb.)	3,000	5,000	7,500	12,000	22,000
Transverse shear on threaded rod - single shear (load lb.)	1,600	2,600	3,800	6,200	15,000
Compressive strength - longitudinal ASTM-D-695 (psi)	54,000	54,000	54,000	54,000	65,000
Flexural strength ASTM-D-790 (psi)	55,000	55,000	55,000	55,000	60,000
Flexural modulus ASTM-D-790 (psi x 10 ⁶)	2.0	2.0	2.0	2.50	2.75
Torque strength using fiberglass nut lubricated with SAE 10W30 motor oil (ft./lbs.)	5	10	35	50	60
Dielectric strength ASTM-D-149 (kv/in.)	35	35	35	35	35
Water absorption 24 hour immersion - threaded ASTM-D-570 (%)	1	1	1	1	1
Coefficient of thermal expansion-longitudinal (in/in/°F)	5 x 10 ⁻⁶	5 x 10 ⁻⁶	5 x 10 ⁻⁶	5 x 10 ⁻⁶	5 x 10 ⁻⁶
Max recommended operation temp - based on 50% retention of ultimate thread shear strength (°F)	200	200	200	200	200
Stud weight lb/ft	0.07	0.12	0.18	0.28	0.50
Flammability	Self-Extinguishing on All				

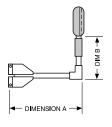
NON-METALLIC U-BOLT

U-Bolts are made from a fiberglass reinforced urethane material and are recommended for temperatures ranging from -40°F to +150°F.

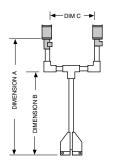

		Dimensions						Load Ratings	
	Pipe Nominal	A	В	С	D	TL	Max. R Load		
Part No.	Dia.	in. <i>(mm)</i>	in. <i>(mm)</i>	in. <i>(mm)</i>	in. <i>(mm)</i>	in. <i>(mm)</i>	lbs. (I	<i>kg)</i> in. lbs. <i>(Nm)</i>	
CS-UB-1/2	1/2"	0.93 <i>(24)</i>	0.375 <i>(10)</i>	1.56 <i>(40)</i>	2.41 <i>(61)</i>	1.25 <i>(32)</i>	75 <i>(</i> 3	<i>34)</i> 20 <i>(2.3)</i>	
CS-UB-3/4	3/4"	1.12 <i>(28)</i>	0.375 <i>(10)</i>	1.66 <i>(42)</i>	2.60 <i>(66)</i>	1.25 <i>(32)</i>	75 <i>(</i> 3	34) 20 <i>(2.3)</i>	
CS-UB-1	1"	1.37 <i>(35)</i>	0.375 <i>(10)</i>	1.78 <i>(45)</i>	2.85 <i>(72)</i>	1.25 <i>(32)</i>	75 <i>(</i> 3	34) 20 (2.3)	
CS-UB-1.25	11/4"	1.68 <i>(43)</i>	0.375 <i>(10)</i>	1.94 <i>(49)</i>	3.16 <i>(80)</i>	1.25 <i>(32)</i>	75 <i>(</i> 3	34) 20 <i>(2.3)</i>	
CS-UB-1.50	1½"	2.00 <i>(51)</i>	0.375 <i>(10)</i>	2.10 <i>(53)</i>	3.47 <i>(88)</i>	1.25 <i>(32)</i>	75 <i>(</i> 3	<i>34)</i> 20 <i>(2.3)</i>	
CS-UB-2	2"	2.43 <i>(62)</i>	0.500 <i>(13)</i>	2.46 <i>(62)</i>	4.18 <i>(106)</i>	1.50 <i>(38)</i>	150 <i>(t</i>	<i>68)</i> 40 <i>(4.5)</i>	
CS-UB-2.5	21/2"	2.93 <i>(74)</i>	0.500 <i>(13)</i>	2.71 <i>(69)</i>	4.68 <i>(119)</i>	1.50 <i>(38)</i>	150 <i>(t</i>	<i>68)</i> 40 <i>(4.5)</i>	
CS-UB-3	3"	3.56 <i>(90)</i>	0.500 <i>(13)</i>	3.03 (77)	5.31 <i>(135)</i>	1.50 <i>(38)</i>	150 <i>(t</i>	<i>68)</i> 40 <i>(4.5)</i>	
CS-UB-3.5	31/2"	4.06 <i>(103)</i>	0.500 <i>(13)</i>	3.28 <i>(83)</i>	5.81 <i>(148)</i>	1.50 <i>(38)</i>	150 <i>(t</i>	<i>68)</i> 40 <i>(4.5)</i>	
CS-UB-4	4"	4.56 <i>(116)</i>	0.500 <i>(13)</i>	3.53 <i>(90)</i>	6.31 <i>(160)</i>	1.50 <i>(38)</i>	150 <i>(t</i>	<i>68)</i> 40 <i>(4.5)</i>	

UNIVERSAL INSTRUMENT PIPE SUPPORT

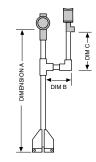
The universal instrument pipe support system is manufactured from 2" filament wound epoxy resin conduit for increased stiffness and corrosion resistance. The outside diameter is 2%" which is identical to 2" steel pipe (or PVC). The system is non-conductive and resistant to sunlight. The base is made from vinyl ester resin, with an 8" square base, specially designed with side bracing for extra bending support. The instrument pipe support is delivered fully assembled, or available in individual components if so desired. The 2" non-metallic u-bolt is an excellent device for attaching instruments, gauges etc. (Shaded components not included.)


SINGLE FLOOR MOUNT

Catalog No.: CS-IS1- (dim) A (Where A is defined per sketch below.)

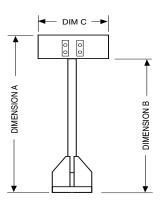

WALL OR FLOOR MOUNT

Catalog No.: CS-IS2-(dim) A - (dim) B


DOUBLE FLOOR MOUNT

Catalog No.: CS-IS3- (dim) A - (dim) B - (dim) C

MULTIPLE INSTRUMENT FLOOR MOUNT


Catalog No.: CS-IS4- (dim) A - (dim) B - (dim) C

PUSHBUTTON STATION

Similar to the instrument pipe support system, with 2" vinyl ester square tubing. The base is made from vinyl ester resin, with an 8" square base, specially designed with side bracing for extra bending support.

Catalog No.: CS-PB- (dim) A - (dim) B - (dim) C

CORROSION RESISTANCE GUIDE

The corrosion guidelines tests were performed by immersing coupons for 30 days in the chemical at the temperature shown. This is a very severe test. It has been shown that CHAMPION STRUT® can often be used for chemicals listed as "Not Recommended" (NR). Real cases often are limited to fumes, vapors and occasional splashes at the temperatures indicated. Polyester is the standard resin used in the CHAMPION STRUT System, however a vinyl ester resin system is also available.

This information is provided solely as a guide since it is impossible to anticipate all individual site conditions. For specific applications which are not covered in this guide, and may require screening tests to evaluate resin system suitability, consultation with the factory is recommended.

Chemical	75° F (24° C)	150° F (66° C)	Chemical	75° F (24° C)	150° F (66° C)
Acetic Acid 15%	P	Р	Lithium Chloride, Sat'd	Р	Р
Acetic Acid 50%	Р	V	Magnesium Salts	Р	Р
Acetic Acid (Glacial)	NR	NR	Mercuric Chloride	Р	Р
Acetone	V*	NR	Mercurous Chloride	Р	Р
Aluminum Chloride	Р	Р	Mercury	Р	Р
Aluminum Hydroxide	Р	٧	Methyl Alcohol	Р	NR
Aluminum Potassium Sulphate	Р	Р	Methyl Ethyl Ketone	NR	NR
Aluminum Sulphate	Р	Р	Mineral Oils	Р	Р
Ammonia, Dry Gas	Р	Р	Naphtha	Р	Р
Ammonia, Liquid	NR	NR	Nickel Salts	Р	Р
Ammonium Chloride, Sat'd	Р	Р	Nitric Acid, 0-10%	Р	V
Ammonium Hydroxide 20%	P*	V	Nitric Acid >10%	NR	NR
Ammonium Nitrate, Sat'd	P	P	Oleic Acid	P	P
Ammonium Sulfate, Sat'd	P	P	Oxalic Acid	P	P
Amyl Alcohol	P*	V*	Perchloroethylene	P	P
Benzene	P	NR	Phenol, 0-2%	V	NR
Benzene Sulfonic Acid 30%	P	V	Phenol, >2%	NR	NR
Benzoic Acid, Sat'd	P	P	Phosphoric Acid	P	P
Butyl Alcohol, Normal	P	NR	Potassium Carbonate, 0-15%	P	V
Calcium Salts	Р	P*	Potassium Carbonate, 15-Sat'd	NR	NR
Carbon Disulfide	NR	NR	Potassium Hydroxide	V	NR
Carbonic Acid, Sat'd	Р	P	Potassium Permanganate	P	V
Carbon Tetrachloride	P*	P*	Potassium Persulfate	V	NR
Chlorine, Dry Gas	Р	P	Potassium Salts	P	P
Chlorine, Wet Gas	v v	v V	Silver Nitrate	Р	Р
Chlorine Dioxide	P*	٧*	Sodium Bicarbonate	Р	Р
Chlorine Water	P	P*	Sodium Bisulfate	P	P
Chlorobenzene	NR	NR	Sodium Carbonate	Р	v
Chromic Acid 5%	P	V*	Sodium Chloride	P	P
Citric Acid, Sat'd	Р	P	Sodium Dichromate	Р	v
Copper Sulfate	P	P	Sodium Hydroxide	V	NR
Crude Oil, Sour	Р	P	Sodium Hypochlorite, 0-5%	P	V
Diesel Fuel	Р	Р	Sodium Hypochlorite, 5-10%	v V	v
Ethyl Alcohol	NR	NR	Sodium Hypochlorite, >10%	V	NR
Ethylene Glycol	P	P	Sodium Nitrate	P	P
Fatty Acids	Р	P	Sodium Silicate <6%	V	v
Ferric Salts	Р	P	Sodium Sulfate	P	P
Ferrous Sulfate	Р	Р	Sodium Sulfide	V	v
Fluoboric Acid, Sat'd	P	V	Sodium Thiosulfate	V	NR
Fluosilicic Acid 0-35%	v	v*	Styrene	NR	NR
Formic Acid, Vapor	P	P	Sulfure Dioxide, Dry or Wet Gas	P	P
Fuel Oil	P	P	Sulfuric Acid, Vapor	P	P
Gasoline	P	P*	Sulfurous Acid	V	NR
Glycerine	P	P	Tannic Acid	v P	P
Hydrochloric Acid 0-10%	P	P	Tartaric Acid	P	P
Hydrochloric Acid 10-36%	P	V*	Toluene	NR	NR
Hydrofluoric Acid	NR	NR	Trisodium Phosphate	V	V
Hydrogen Chloride, Dry or Wet Gas	P	V	Water, City	v P	v P
Hydrogen Peroxide	NR	NR		1	1
Hydrogen Sulfide, Dry or Wet Gas	NIN P	V	P – Polyester resin system		
Kerosene	P	V P	V – Vinyl ester resin system		
Lactic Acid	r P	P	NR – not recommended		
	P P	P P	* – some limitations apply - consult the	e factory	
Lime Slurry, Sat'd	r	r			

Information in this table is based on data supplied by raw material suppliers and collected from many years of similar industrial applications.

Temperatures represent standard test conditions and are not minimums or maximums. CHAMPION STRUT products may be acceptable at other temperatures for some chemicals, but should be tested to determine specific suitability.

The recommendations or suggestions contained in this table are made without guarantee or representation as to results. We suggest that you evaluate these recommendations and suggestions in your own laboratory or field trial prior to use.

This is to certify that

Champion Fiberglass Inc.

6400 Spring Stuebner Rd., Spring, Texas 77389 USA

operates a

Quality Management System

which complies with the requirements of

ISO 9001:2008

for the following scope of registration

Manufacture of fiberglass conduit and fittings.

Certificate No.: CERT-0065909 File No.: 1058413 Issue Date:

September 28, 2012

Original Certification Date: November 6, 2009 Current Certification Date: November 5, 2012 Certificate Expiry Date: November 4, 2015

Chris Jouppi OMI-SAI Canada Limited

Guillaume Gignac, ing.f Vice President, Corporate Operations, Accreditation & Quality QMI-SAI Canada Limited

▶ 6400 Spring Stuebner Rd Spring, TX 77389 Main: 281.655.8900 Fax: 281.257.2523

» championfiberglass.com

